97 research outputs found

    An experimental comparison of path planning techniques applied to micro-sized magnetic agents

    Get PDF
    Micro-sized agents can be used in applications suchas microassembly, micromanipulation, and minimally invasive surgeries. Magnetic agents such as paramagnetic microparticles can be controlled to deliver pharmaceutical agents to difficult-toaccess regions within the human body. In order to autonomously move these microparticles toward a target/goal area, an obstaclefree path must be computed using path planning algorithms. Several path planning algorithms have been developed in the literature, however, to the best of our knowledge, only few have been employed in an experimental scenario. In this paper we perform an experimental comparison of six path planning algorithms when applied to the motion control of paramagnetic microparticles. Among the families of deterministic and probabilistic path planners we select the ones that we consider the most fundamental, such as: A* with quadtrees, A* with uniform grids, D* Lite, Artificial Potential Field, Probabilistic Roadmap and Rapidly-exploring Random Tree. We consider a 2D environment made by both dynamic and static obstacles. Four scenarios are evaluated. Three metrics such as computation time, length of the trajectory performed by the microparticle, and time to reach the goal are used to compare the planners. Experimental results reveal equivalence between almost all the considered planners in terms of trajectory length and completion time. Concerning the computation time, A* with quadtrees and Artificial Potential Field achieve the best performances

    Cooperative Navigation for Mixed Human–Robot Teams Using Haptic Feedback

    Get PDF
    In this paper, we present a novel cooperative navigation control for human–robot teams. Assuming that a human wants to reach a final location in a large environment with the help of a mobile robot, the robot must steer the human from the initial to the target position. The challenges posed by cooperative human–robot navigation are typically addressed by using haptic feedback via physical interaction. In contrast with that, in this paper, we describe a different approach, in which the human–robot interaction is achieved via wearable vibrotactile armbands. In the proposed work, the subject is free to decide her/his own pace. A warning vibrational signal is generated by the haptic armbands when a large deviation with respect to the desired pose is detected by the robot. The proposed method has been evaluated in a large indoor environment, where 15 blindfolded human subjects were asked to follow the haptic cues provided by the robot. The participants had to reach a target area, while avoiding static and dynamic obstacles. Experimental results revealed that the blindfolded subjects were able to avoid the obstacles and safely reach the target in all of the performed trials. A comparison is provided between the results obtained with blindfolded users and experiments performed with sighted people

    Acute stress impairs sensorimotor gating via the neurosteroid allopregnanolone in the prefrontal cortex

    Get PDF
    Ample evidence indicates that environmental stress impairs information processing, yet the underlying mechanisms remain partially elusive. We showed that, in several rodent models of psychopathology, the neurosteroid allopregnanolone (AP) reduces the prepulse inhibition (PPI) of the startle, a well-validated index of sensorimotor gating. Since this GABAA receptor activator is synthesized in response to acute stress, we hypothesized its participation in stress-induced PPI deficits. Systemic AP administration reduced PPI in C57BL/6J mice and Long-Evans, but not Sprague-Dawley rats. These effects were reversed by isoallopregnanolone (isoAP), an endogenous AP antagonist, and the GABAA receptor antagonist bicuculline and mimicked by AP infusions in the medial prefrontal cortex (mPFC). Building on these findings, we tested AP's implication in the PPI deficits produced by several complementary regimens of acute and short-term stress (footshock, restraint, predator exposure, and sleep deprivation). PPI was reduced by acute footshock, sleep deprivation as well as the combination of restraint and predator exposure in a time- and intensity-dependent fashion. Acute stress increased AP concentrations in the mPFC, and its detrimental effects on PPI were countered by systemic and intra-mPFC administration of isoAP. These results collectively indicate that acute stress impairs PPI by increasing AP content in the mPFC. The confirmation of these mechanisms across distinct animal models and several acute stressors strongly supports the translational value of these findings and warrants future research on the role of AP in information processing

    Haptic Guidance in Dynamic Environments Using Optimal Reciprocal Collision Avoidance

    Get PDF
    Human guidance in situations where the users cannot rely on their main sensory modalities, such as assistive or search-and-rescue scenarios, is a challenging task. In this letter, we address the problem of guiding users along collision-free paths in dynamic environments, assuming that they cannot rely on their main sensory modalities. In order to safely guide the subjects, we adapt the optimal reciprocal collision avoidance to our specific problem. The proposed algorithm takes into account the stimuli which can be displayed to the users and the motion uncertainty of the users when reacting to the provided stimuli. The proposed algorithm was evaluated in three different dynamic scenarios. A total of 18 blindfolded human subjects were asked to follow haptic cues in order to reach a target area while avoiding real static obstacles and moving users. Three metrics such as time to reach the goal, length of the trajectories, and minimal distance from the obstacles are considered to compare results obtained using this approach and experiments performed without visual impairments. Experimental results reveal that blindfolded subjects are successfully able to avoid collisions and safely reach the targets in all the performed trials. Although in this letter we display directional cues via haptic stimuli, we believe that the proposed approach can be general and tuned to work with different haptic interfaces and/or feedback modalities

    Antidepressant and pro-motivational effects of repeated lamotrigine treatment in a rat model of depressive symptoms

    Get PDF
    Background: The antiepileptic lamotrigine is approved for maintenance treatment of bipolar disorder and augmentation therapy in treatment-resistant depression. Previous preclinical investigations showed lamotrigine antidepressant-like effects without addressing its possible activity on motivational aspects of anhedonia, a symptom clinically associated with poor treatment response and with blunted mesolimbic dopaminergic responsiveness to salient stimuli in preclinical models. Thus, in rats expressing a depressive-like phenotype we studied whether repeated lamotrigine administration restored behavioral responses to aversive and positive stimuli and the dopaminergic response to sucrose in the nucleus accumbens shell (NAcS), all disrupted by stress exposure. Methods: Depressive-like phenotype was induced in non-food-deprived adult male Sprague-Dawley rats by exposure to a chronic protocol of alternating unavoidable tail-shocks or restraint periods. We examined whether lamotrigine administration (7.5 mg/kg twice a day, i.p.) for 14–21 days restored a) the competence to escape aversive stimuli; b) the motivation to operate in sucrose self-administration protocols; c) the dopaminergic response to sucrose consumption, evaluated measuring phosphorylation levels of cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS, by immunoblotting. Results: Lamotrigine administration restored the response to aversive stimuli and the motivation to operate for sucrose. Moreover, it reinstated NAcS DARPP-32 phosphorylation changes in response to sucrose consumption. Limitations: The pro-motivational effects of lamotrigine that we report may not completely transpose to clinical use, since anhedonia is a multidimensional construct and the motivational aspects, although relevant, are not the only components. Conclusions: This study shows antidepressant-like and pro-motivational effects of repeated lamotrigine administration in a rat model of depressive symptoms

    15th International School of Quantum Electronics "Ettore Majorana"

    No full text

    Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation?

    Get PDF
    The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms

    Human-Robot Formation Control via Visual and Vibrotactile Haptic Feedback

    No full text
    In this paper we present a new visuo-haptic interaction mechanism for human-robot formation control. The formation setup consists of a human leader and multiple follower robots. The mobile robots are equipped only with RGB-D cameras, and they should maintain a desired distance and orientation to the leader at all times. Mechanical limitations common to all the robots limit the possible trajectories that the human can take. In this regard, vibrotactile feedback provided by a haptic bracelet guides the human along trajectories that are feasible for the team by warning her/him when the formation constraints are being violated. Psychophysical tests on the bracelet together with real-world experiments conducted with a team of Pioneer robots show the effectiveness of the proposed visuo-haptic paradigm for the coordination of mixed human-robot teams
    • …
    corecore